

UNIVERSITY OF TORONTO

Introduction

- Variability in ¹⁰Be-derived catchment-wide erosion rates in to lithology¹, tectonics^{1,2}, and climate^{3,4}
- complicated by the use of *catch*ment-wide mean values for non-normal data, within-catchment spatial variability of controls, and
- published^{1,2,3,4} ¹⁰Be-derived erosion rates from the southcentral Andes, we:
 - catchment-wide means, compared to other metrics,
 - interactions, through bivariate and multivariate Bayesian linear regression

Lithology, topography, and spatial variability of vegetation: major controls of erosion in the south-central Andes

- Sampled catchments
- (internal drainage)
- Sample sites

- McCarthy et al., 2019

¹University of Toronto, ²North Carolina State University, ³University of Cincinnati, ⁴Sun Yat-sen University, ⁵Incorporated Research Institutions for Seismology

Erin G. Seagren¹, Lindsay M. Schoenbohm¹, Lewis A. **Owen²**, Paula Figueiredo², Sarah Hammer³, Jeremy M. **Rimando¹, Yang Wang⁴, Wendy Bohon⁵**

*e.seagren@mail.utoronto.ca