Worldbuilding from Tectonic First Principles

Capstone Project in a third-year undergraduate **Tectonics Course**

COURSE STRUCTURE

"I think having the map project announced at the beginning was crucial. Usually I went home from class thinking "Okay, how am I gonna [sic] put that on the map? Where should this feature/phenomenon occur on the map? Did we put anything like that on the map? It might be cool to have," and such." - ERS302 student

Basic Parameters

- 27 undergraduate students organized into seven groups
- 3rd and 4th year Earth Science Majors or Minors
- Winter term, 2018
- 35% of course mark
- scaffolded project

- integration with lecture, reading, and class discussion - 6x TA meetings

- Self/Peer Evaluations

- Instruction in group dynamics, project management

Week	Activity	Task	Deliverables	Points (of 35)
	In Class	Lecture: Intro to tectonics; Earth structure		
		Reading: Continental drift (Hallam, 1975)		
1	TA Meeting	Establish team roles, contract, and résumé	Team contract	1
	Drojact	Begin tectonic map, draft initial plate boundaries and		
	Project	vectors		
	In Class	Lecture: Geophysics primer; hotspots		
2		Reading: Hotspots (DePaolo and Manga, 2003; Foulger		
	Project Floment	and Natiand, 2003) Work on plate boundaries and vectors		
		Locturo: Plate motions: mossuring plate velocity		
3	III Class	Deading: Triale institute (MaKanaia and Marray, 1000)		
		Reading: Triple Juctions (Mickenzle and Morgan, 1969)		
	TA NA	Exercise: plate motions		
	IA Meeting	Present draft tectonic map	,	
	Project	Add hotspots, complete tectonic map	Tectonic map/report	4
	In Class	Lecture: Passive margins; mid-ocean ridges		
4		Reading: Proto-rifting (Aragon-Arreola and Martin-		
	TA Meeting	Self/peer evaluation: discuss geologic map	Self/peer evaluation	3
	Project	Begin geologic man, add seafloor/nassive margins		5
		Lecture: Continental rifts: transform faults		
		Reading: Continental tranforms (Tapponnier et al		
F		1982)		
5		Exercise: geometry of East African Rift and Basin and		
		Range extensional province		
	Project	Add continental rifts/transforms		
6	In Class	Lecture: Subduction zones		
		Reading: Subduction zone coupling and climate (Lamb		
	Project	Add subduction zones		
	In Class	Lecture: Accretion: Cordilleran orogens		
		Reading: Baia-BC (Cowan et al. 1997)		
7	TA Meeting	Self/neer evaluation: discuss geologic man	Self/near avaluation	3
	Project	Add Cordilloran orogons	Sell/peel evaluation	5
	Project	Aud Cordineran orogens		
8				
	In Class	Lecture: Alpine/Himalayan orogens		
9		Reading: Lower crustal flow (Beaumont et al., 2001)		
		Exercise: Models for extension in Tibet gallery walk		
	Project	Add Alpine orogens, start on physiographic map		
10	In Class	Lecture: Plate tectonics through time		
		Reading: Onset of modern plate tectonics (Condie and		
	TA Meeting	Present draft geologic map; discuss poster presentation		
	Project	Add cratons, complete geologic map, work on	Geologic map/report	12
	,	physiographic map, work on poster		
	In Class	hazards		
11		Reading: Earthquakes and landscape evolution (Ouimet,		
		2010)		
	TA Meeting	Self/peer evaluation; present draft physiographic map	Self/peer evaluation	3
	Project	anu poster Complete physiographic man complete poster	Physiographic man/report	Δ
12	Project	Poster session	Poster and presentation	5
- - -			i ester and presentation	2

Software

- Kerika for project management (https://kerika.com/en/) - GPlates for constructing tectonic map (https://www.gplates.org/index.html) - Gprojector for projecting maps (https://www.giss.nasa.gov/tools/gprojector/) - Drawing Program for making maps (e.g., Illustrator, Photoshop, Gimp, Inkscape) - Inkarnate for drawing physiographic map (https://inkarnate.com/)

Tectonic Map

Geologic

Physio Map

EXAMPLE PROJECT LEAR By the end o Addis Plate Concept Concer Develop ci Abean Plate South pole CONCEPTUALIZE TEMPORAL GEOLOGIC CHANGE "It was difficult when trying to show a difference in time, especially for orogenic events since we limited the representation of time. this [sic] made it look like all the events occured [sic] around the same time." - ERS302 student Ecclesipian (230 Ma) Malgian (175 Ma) Anscipian (135 Ma) Gephynpian (90 Ma) Ompian (50 Ma) Ecclesipian (230 Ma) Malpian (175 Ma) Anocipian (135 Ma) Gephyrpian (90 Ma) Ompian (50 Ma) Evaporites Divergent boundary Convergent boundary Transform boundary Current deposition and time. Malpian (175 Ma) Anscipian (135 Ma) Gephyrpian (90 Ma) Ompian (50 Ma) and Excelic. Formation of Sangucian. Relative increase in tectonic speeds Drogenic belt geol. tect. Subduction zone spreading centers increase plate mo ment speeds. Craton Formation. Oldest roc South pole North pole edimentary Rocks Volcanic Rocks ta 0 - 65 Ma 0 - 65 Ma 0 - 65 Ma Ma 66 - 250 Ma 66 - 250 Ma 66 - 250 Ma Ma 251 - 540 Ma 251 - 540 Ma 251 - 540 Ma D Ma 25 > 541 Ma > 541 Ma Large Igneous Province TECTONIC & STRUCTURAL SYMBOLS Subduction/ Convergent Boundary _____ Normal Fault Legend Subdection some Spreading ridge Dandjorn lauft Stelse dip-fast Herent Druct fast Rock Type us Metamorphic Oceans and the threat fault.) Continents 30-60 Ma SUBDUCTION ZONES VOLCANOR -TRANSFORM FAULTS Foliated ____ Non-Foliated Carlsonate

SCALE: 1 cm: 1000 kn

Lindsay M. Schoenbohm* and Mitchell McMillan

Department of Chemical and Physical Sciences, University of Toronto Mississauga *lindsay.schoenbohm@utoronto.ca

NING OUTCOME	CONCE	
f the course, the student will be able to:	Activity to achieve/assess outcome	A. Week 3
ualize spatial data (mental rotation)	Tectonic Map, Survey	submission, (Team 3) 601
ptualize temporal geologic change	Legend, Geologic Map, Survey	
tical thinking and problem solving skills	Tectonic and Geologic Map, Survey	305
mplex concepts across multiple subjects	Geologic Map, Survey	605 905 907 907 907 907 907 907 907 907 907 907
ge complex, team-based projects	Kerika Project Management, Peer- and Self-surveys, Survey	B. Week 11 submission
ΓΕΟΤΙΙΛΙΙΖΕ ΤΕΛΛΟΓ		30N + + + + + + + + + + + + + + + + + + +

"This assignment not only allowed us to apply what we know but then also gave us the chance to critically assess and question each one of our decisions and whether they made sense. If it did not, then we either needed to re-read our lecture notes and readings or perform further research to solve the problem at hand. It provided an opportunity for us to think critically instead of simply regurgitating what we know." -ERS302 student

"I did find it difficult [to decide the level of detail to include in our geologic map]. But we started adding to the maps early. And then kept adding more and more detail as we went along. The ending amount of detail is a culmination of a lot of mini sporadic moments of inspiration." - ERS302 student

EPTUALIZE SPATIAL DATA (MENTAL ROTATION)

"We did not expect it to be simple, but we underestimated how difficult it would actually be to make all the plate interactions and triple junctions not only function but also make geological sense. All the relationships between a plate and its neighbours had to be taken into account which often led to difficulties. Also, it became difficult to try and picture what the poles would look like when working on a 2-D map so we often found ourselves making a small change to the 2-D map before projecting it onto a 3-D globe to check if it makes sense." - ERS302 student

MANAGE COMPLEX, TEAM-BASED PROJECTS VIEW AS WORKFLOW 👻 🚓 🗇 🔮 🙀 Setbacks or Problems New DONE MAR 27 Determine if we are still doing inland Determine rock ages (oldest, youngest, how olcano/hotspot idea many, relative ages, name... etc.) DONE MAR 24 Edit Geological Map Report, Review Geologic Map, and add updated Tectonic map. geology map New DONE MAR 24 Physiographic Map Dictating the types of rock at various locations on the map and explanation as to why. New DONE MAR 24 Physiographic Repor Determine fault layout (thrust, reverse, where, ow much detail... etc.)

Number of responses	Subject	UTM Course Code/Title
6	Structural Geology	ERS202: Dynamic Earth
5	Sedimentary Geology	ERS211: Sedimentary Geology
4	Petrology	ERS203: Rock Forming Processes
4	Oceanography	ERS312: Oceanography
3	Geophysics	ERS303: Geophysics
2	Paleoclimatology	ERS412: Climate through time
1	Introductory Geology	ERS101/120: Planet Earth
1	Cryosphere	GGR317: The Cryosphere

CONCLUSIONS - SUCCESS?					
Learning outcomes By the end of the course, the student will be able to:	Outcome achieved?				
Conceptualize spatial data (mental rotation)	Yes – most maps were successful or corrected, survey responses reflect on these challenges. <i>Next time: require polar projections</i>				
Conceptualize temporal geologic change	Maybe – not all groups created timescale; unsuccessful at depicting deep time in maps <i>Next time: require separate legend deliverable;</i> organize reports chronologically				
Develop critical thinking and problem solving skills	Yes – maps were mostly successful with details, survey responses reflect on these challenges				
Integrate complex concepts across multiple subjects	Yes – surveys report using structure, sedimentology, petrology, oceanography, geophysics <i>Next time: groups with different backgrounds</i>				
Manage complex, team-based projects	Maybe – student fell behind on work, encountered problems with group dynamics <i>Next time: more interim deliverables; more</i> <i>instruction and checking on use of Kerika</i>				

"One thing is to learn earth science theory and the other is to apply everything from previous courses (geology, climatology, cryology, geography, etc.) learned into a long-lasting project such as the World Building Assignment. This assignment not only allowed us to apply what we know but then also gave us the chance to critically assess and question each one of our decisions and whether they made sense. If it did not, then we either needed to re-read our lecture notes and readings or perform further research to solve the problem at hand. It provided an opportunity for us to think critically instead of simply regurgitating what we know." - ERS302 student